

BaBar Detector Performance

Dominique Boutigny - LAPP - CNRS/IN2P3

On behalf of the BaBar collaboration

3rdInternational Conference on B Physics and EP Violation
Taipei, December 3-7, 1999

Introduction (1)

- The BaBar experiment is installed on the SLAC PEPII B-Factory
 - Asymmetric collider: e^{-} : 9 GeV e^{+} : 3.1 GeV ($\beta \gamma = 0.56$)

• First hadronic event recorded May 26, 1999

Introduction (2)

- The main goal of the BaBar experiment is the measurement of the CP violation parameters
- It will also extensively study the B, charm, τ and 2-photon physics
 - First analysis plots will be shown by David Kirkby
- CP violation measurement as well as other B physics requires
 - **→** Excellent tracking performance and vertex reconstruction
 - \rightarrow Ability to identify and measure γ and π^0
 - **→** Excellent Particle Identification capability
 - → Muon and neutral hadron identification and measurement

Integrated Luminosity

November 19: $\mathcal{L} = 1.7 \text{ fb}^{-1}$ on tape (2 fb⁻¹ delivered)

BaBar Recorded Luminosity (BaBar L3)

BaBar Efficiency is now ~ 90 %

Beam Related Background

- PEP II is providing clean beams
- The radiation dose received by the BaBar detector is well below the "budget" (240 kRad/year)

The BaBar Detector

The Silicon Vertex Tracker

- 5 Double sided layers
- 143K channels (0.94 m²)
- Radiation Hard: 2 Mrad
- Intended to provide excellent vertex resolution and tracking capability

SVT Performance

- 2 Track Bhabha events
- Plot shows the rms of the residuals of the hits associated to a track

 Monte Carlo assumes perfect SVT alignment

The Drift Chamber

Drift Chamber during installation in BaBar

- 7100 hexagonal cells
- Organized in 10 axial and stereo Super Layers (40 layers)
- Maximum drift distance
 ~11 mm
- 80%He-20%C₄H₁₀ mixture
- Should provide good tracking capability and dE/dx Pid information

Dch Performance (1)

Drift Chamber Hit Resolution

- Single hit resolution as a function of the distance from wire
- Inclusive track selection But dominated by Bhabha events
- (Weighted) Average resolution is
 125 μm to be compared to the 140
 μm of the design

Dch Performance (2)

Dch Performance (3)

 Loose cuts on track quality applied

7.5% resolution

 BaBar should ultimately achieve <u>7% resolution</u> when all the corrections will be applied

Tracking Performance (Svt+Dch)

Resolution on distance of closest approach

• $\underline{\mathbf{P}_{t}}$ resolution :

- for $P_t > 3.5 \text{ GeV/c}$

$$\frac{\sigma_{Pt}}{Pt} = 0.30\% Pt$$

for Dch only

$$\frac{\sigma_{Pt}}{Pt} = 0.45\% Pt$$

The DIRC

• 144 Quartz bars

• 5/12 of the quartz bars installed at BaBar Startup

Complete since October

 See detailed talk from Marco Zito

Detection of Internally Reflected Cherenkov light

Illustration of DIRC performance

- $D^0 \rightarrow K\pi$ for $P^*_D > 1.5$ GeV/c
- $0.5 < P_K < 2.5 \text{ GeV/c}$
- Kaons are selected in a 2σ region around the expected Cherenkov angle
- Kaon efficiency: ~80% for tracks pointing to the region covered by the quartz bars
- Background rejection factor under the D peak : 5

The CsI Electromagnetic Calorimeter

- 6580 CsI(Tl) crystal (5760+820)
- Material in front : $0.20-0.25 X_0$
- Readout by 2 large area photodiodes
- Liquid source for calibration in front of the crystals

Calorimeter Performance

Ratio of measured to expected energy for bhabha events

- The expected e⁻(e⁺) energy is computed from the track angle
- The low energy tail is due to Bremhsstrahlung
- Noise contributions :

Incoherent noise: 420 KeV

Coherent Noise: 380 KeV

 Coherent noise can be reduced down to ~100 KeV

Calorimeter Performance

π⁰ Mass Peak

- $E_{\gamma} > 100 \text{ MeV}$
- $E_{\pi} > 500 \text{ MeV}$
- Improvements expected by reducing the coherent noise

BaBar expects to achieve a resolution of 5.7%

The Instrumented Flux Return (IFR)

Instrumented Flux Return

- Resistive Plate Chambers
- For Muon and Neutral Hadron detection (K_L^0)
- 2 double-layer cylindrical RPC inside the coil

IFR Performance

IFR Muon ID Efficiency, Barrel+Forward

- Muon Id efficiency is computed from di-muon data (P > ~4 GeV/c).
- 10% inefficiency due to detector geometry
- π contamination from pion decay in Dch or in the Emc (2.4/P(GeV) %)
- Punch-Through: 1.2%

Data Processing Status

- BaBar events are processed on a 100 computer-node farm
 - **→** prompt reconstruction
- ~1.9 10⁸ events have been processed so far

Conclusions and Prospects

- The PEPII collider is working very well and is routinely delivering luminosity in the 10³³ cm⁻²s⁻¹ region
- The BaBar experiment has accumulated ~ 1.7 fb⁻¹ since May

The Detector is complete and is performing well

- PEPII is now stopped to install permanent solutions to fix some leaks in the vacuum chamber
- PEPII/BaBar will restart January 3rd

BaBar/PEPII goal is to accumulate 10 fb⁻¹ by the time the run ends next summer